簡介
非線性脈沖傳輸變得輕易昆山瑞和鑫精密机械有限公司了
Fiberdesk是一種用於線性和非線性脈沖傳輸的軟件。它基於經過高精密凸轮分割器過程分步傅立葉變換設施求解擴大的非線性薛定諤方程,而且可以也許將其與速度方程模擬相連系。
每個间歇分割器Fiberdesk軟件的準許証都受硬件加密狗的珍愛。它可以作爲較量爭論機的當地無驅動USB密鑰訂購,在運轉Fiberdesk軟件時需求對峙拔出較量爭論機的形態。
Fiberdesk下載
最新更新:2023年 12 月 18日
拔出 Fiberdesk 加密狗。 下載最新的包竝複雜地運轉可履行文件。
最新的軟件包包括 64 位版本:
– Fiberdesk 7.0 版
– 用於 Fiberdesk 文件的 python 瀏覽器,例如定制
– 功傚列表
發表的文章 (文章中利用Fiberdesk軟件停止模擬)
[88] Yu Xin Jin, Qian Qian Hao, Jing Jing Liu, Jie Liu and Qian Qian Peng, “Numerical investigation of a wideband supercontinuum source based on a large-mode-area photonic crystal fiber pumped at 1.3 μm,” Laser Phys. 34, 045701 (2024).
[87] Zobus, Yannik, “Design and Implementation of a High-Contrast, Millijoule-Level Ultrafast Optical Parametric Amplifier for High-Intensity Lasers.” Technische Universität Darmstadt, Dissertation, Erstveröffentlichung, Verlagsversion (2023).
[86] Victor Hariton, Ammar Bin Wahid, Gonçalo Figueira, Kilian Fritsch, and Oleg Pronin, “Multipass spectral broadening and compression in the green spectral range,” Opt. Lett. 47, 1246-1249 (2022).
[85] Atsushi Ishizawa, Kota Kawashima, Rai Kou, Xuejun Xu, Tai Tsuchizawa, Takuma Aihara, Koki Yoshida, Tadashi Nishikawa, Kenichi Hitachi, Guangwei Cong, Noritsugu Yamamoto, Koji Yamada, and Katsuya Oguri, “Direct f-3f self-referencing using an integrated silicon-nitride waveguide,” Opt. Express 30, 5265-5273 (2022)
[84] Grande, Adrian, et al. “Sub-100 fs all-fiber polarization maintaining widely tunable laser at 2 µm.” Opt. Lett 47 (2022): 1545.
[83] Li, Yu, et al. “Fabrication of Step− Index Fluorotellurite Fibers with High Numerical Aperture for Coherent Mid—Infrared Supercontinuum.” Crystals 12.11 (2022): 1649.
[82] Nagl, Nathalie. “Reaching the Performance of State-of-the-Art Fiber-Pumped Systems.” A New Generation of Ultrafast Oscillators for Mid-Infrared Applications. Cham: Springer International Publishing, 2022. 71-93.
[81] Bao, Y., Dai, L., Jiang, J., Huang, Z., Huang, Q., Rozhin, A., Mou, C., Humidity Resistant Carbon Nanotubes-Styrene Methyl-Methacrylate Polymer Composite for Ultrafast Laser. Adv. Optical Mater. 2022, 2200461.
[80] William Renard, Clément Chan, Antoine Dubrouil, Jérôme Lhermite, Giorgio Santarelli and Romain Royon, “Agile femtosecond synchronizable laser source from a gated CW laser,” Laser Phys. Lett. 19, 075105, (2022).
[79] Atsushi Ishizawa, Kota Kawashima, Rai Kou, Xuejun Xu, Tai Tsuchizawa, Takuma Aihara, Koki Yoshida, Tadashi Nishikawa, Kenichi Hitachi, Guangwei Cong, Noritsugu Yamamoto, Koji Yamada, and Katsuya Oguri, “Direct f-3f self-referencing using an integrated silicon-nitride waveguide,” Opt. Express 30, 5265-5273 (2022).
[78] D. Marion, G. Duchateau, and J.-C. Delagnes, “Control of nonlinear processes using versatile random photonic sources: Application to the energy deposition in a dielectric material,” Phys. Rev. A 105, 013525 (2022).
[77] Yu Zhang, Yaoyao Qi, Song Yang, Nannan Luan, Zhenxu Bai, Jie Ding, Yulei Wang, Zhiwei Lu,
High pulse energy, narrow-linewidth all-fiber 1064 nm picosecond master oscillator power amplifier system, Optics & Laser Technology, Volume 147, p.107636 (2022).
[76] Xuzhuo Jia, Yuanqi Song, Li Yan, Qimeng Lin, Lei Hou, Xiaoqiang Feng and Jintao Bai, “Yb-doped polarization-maintaining femtosecond fiber laser using Gires–Tournois interferometers for dispersion management,” Appl. Phys. Express 14 112007 (2021).
[75] Victor Distler, Friedrich Möller, Benjamin Yildiz, Marco Plötner, César Jauregui, Till Walbaum, and Thomas Schreiber, “Experimental analysis of Raman-induced transverse mode instability in a core-pumped Raman fiber amplifier,” Opt. Express 29, 16175-16181 (2021).
[74] Y. W. Lee, J. Y. Chuang, C. C. Lin, M. C. Paul, S. Das, and A Dhar, “High-efficiency picosecond mode-locked laser using a thulium-doped nanoengineered yttrium-alumina-silica fiber as the gain medium,” Opt. Express 29, 14682-14693 (2021).
[73] Lee, YW., Chen, CM., Chuang, WH. et al. Highly efficient mode-locked and Q-switched Er3+-doped fiber lasers using a gold nanorod saturable absorber. Sci Rep 11, 20079 (2021).
[72] Pia Fuertjes, Lorenz von Grafenstein, Dennis Ueberschaer, Chao Mei, Uwe Griebner, and Thomas Elsaesser, “Compact OPCPA system seeded by a Cr:ZnS laser for generating tunable femtosecond pulses in the MWIR,” Opt. Lett. 46, 1704-1707 (2021).
[71] Paul Repgen, Generation of High-Energy Pulses by Managing the Kerr-Nonlinearity in Fiber-Based Laser Amplifiers, Dissertation (2021).
[70] T. Zhou, Q. Du, D. Li, E. Esarey, C. Schroeder, C. Geddes, and R. Wilcox, “Distributed Spectral Filtering for Ultrafast Fiber Lasers,” in Laser Congress 2020 (ASSL, LAC), P. Schunemann, C. Saraceno, S. Mirov, S. Taccheo, J. Nilsson, A. Petersen, D. Mordaunt, and J. Trbola, eds., OSA Technical Digest (Optical Society of America, 2020), paper JTu5A.11.
[69] Rezki Becheker, Mohamed Touil, Saïd Idlahcen, Mincheng Tang, Adil Haboucha, Benoit Barviau, Frédéric Grisch, Patrice Camy, Thomas Godin, and Ammar Hideur, “High-energy normal-dispersion fiber optical parametric chirped-pulse oscillator,” Opt. Lett. 45, 6398-6401 (2020)
[68] Zhang, Z., Han, H., Tian, W. et al. A fully stabilized low-phase-noise Kerr-lens mode-locked Yb:CYA laser frequency comb with an average power of 1.5 W. Appl. Phys. B 126, 134 (2020).
[67] Victor Distler, Friedrich Möller, Maximilian Strecker, Gonzalo Palma-Vega, Till Walbaum, and Thomas Schreiber, “Transverse mode instability in a passive fiber induced by stimulated Raman scattering,” Opt. Express 28, 22819-22828 (2020)
[66] Oliver de Vries, Marco Plötner, Florian Christaller, Hao Zhang, Annika Belz, Benjamin Heinrich, Harald Kübler, Robert Löw, Tilman Pfau, Till Walbaum, Thomas Schreiber, and Andreas Tünnermann, “Highly customized 1010 nm, ns-pulsed Yb-doped fiber amplifier as a key tool for on-demand single-photon generation,” Opt. Express 28, 17362-17373 (2020)
[65] Paul Repgen, Benedikt Schuhbauer, Moritz Hinkelmann, Dieter Wandt, Andreas Wienke, Uwe Morgner, Jörg Neumann, and Dietmar Kracht, “Mode-locked pulses from a Thulium-doped fiber Mamyshev oscillator,” Opt. Express 28, 13837-13844 (2020)
[64] Craig Ingram, Huy Tuong Cao, Sebastian Ng, Daniel D. Brown, David Ottaway, Peter Veitch, Adam Gambell, Nikita Simakov, Alexander Hemming, “High precision measurement of optical absorption in low-OH fused silica at 2 micron,” Proc. SPIE 11200, AOS Australian Conference on Optical Fibre Technology (ACOFT) and Australian Conference on Optics, Lasers, and Spectroscopy (ACOLS) 2019, 1120031 (30 December 2019)
[63] O. de Vries, M. Plötner, T. Schreiber, R. Eberhardt, A. Tünnermann, „Fiber lasers: a power-scalable coherent light source for applications in space“,
[62] T. P. Butler, N. Lilienfein, J. Xu, N. Nagl, C. Hofer, D. Gerz, K. F. Mak, C. Gaida, T. Heuermann, M. Gebhardt, J. Limpert, F. Krausz and I. Pupeza, Multi-octave spanning, Watt-level ultrafast mid-infrared source, Journal of Physics: Photonics, Volume 1, Number 4 (2019)
[61] Yu Li, Longfei Wang, Meisong Liao, Long Zhang, Wanjun Bi, Tianfeng Xue, Yinyao Liu, Renli Zhang, Yasutake Ohishic, “Suspended-core fluoride fiber for broadband supercontinuum generation,” Optical Materials, Volume 96, October 2019, 109281
[60] Masaki Tokurakawa, Hiromu Sagara, and Henrik Tünnermann, “All-normal-dispersion nonlinear polarization rotation mode-locked Tm:ZBLAN fiber laser,” Opt. Express 27, 19530-19535 (2019).
[59] Nathalie Nagl, Ka Fai Mak, Qing Wang, Vladimir Pervak, Ferenc Krausz, and Oleg Pronin, “Efficient femtosecond mid-infrared generation based on a Cr:ZnS oscillator and step-index fluoride fibers,” Opt. Lett. 44, 2390-2393 (2019).
[58] S. Kuhn, S. Hein, C. Hupel, J. Nold, F. Stutzki, N. Haarlammert, T. Schreiber, R. Eberhardt, A. Tünnermann, “High-power fiber laser materials: influence of fabrication methods and codopants on optical properties,” Proc. SPIE 10914, Optical Components and Materials XVI, 1091405 (27 February 2019).
[57] Seidel, Marcus (2018): A new generation of high-power, waveform controlled, few-cycle light sources. Dissertation, LMU München: Fakultät für Physik
[56] Ruihong Dai, Yafei Meng, Yao Li, Jiarong Qin, Shining Zhu, and Fengqiu Wang, “Nanotube mode-locked, wavelength and pulsewidth tunable thulium fiber laser,” Opt. Express 27, 3518-3527 (2019).
[55] M. Seidel, X. Xiao and A. Hartung, “Solid-Core Fiber Spectral Broadening at Its Limits,” in IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 5, pp. 1-8, Sept.-Oct. 2018.
[54] Li, F., Yang, Z., Wang, Y., Lv, Z., Wei, Y., Wang, X., … & Zhao, W. (2018). Nonlinear compression of ultrashort-pulse laser to 36fs with 556MW peak power. IEEE Photonics Technology Letters.
[53] Yang, K., Zheng, S., Wu, Y., Ye, P., Huang, K., Hao, Q., & Zeng, H. (2018). Low-repetition-rate all-fiber integrated optical parametric oscillator for coherent anti-Stokes Raman spectroscopy. Optics Express, 26(13), 17519-17528.
[52] Tang, M., Becheker, R., Hanzard, P. H., Tyazhev, A., Oudar, J. L., Mussot, A., … & Hideur, A. (2018). Low Noise High-Energy Dissipative Soliton Erbium Fiber Laser for Fiber Optical Parametric Oscillator Pumping. Applied Sciences, 8(11), 2161.
[51] Becheker, R., Tang, M., Hanzard, P. H., Tyazhev, A., Mussot, A., Kudlinski, A., Hideur, A. “High-energy dissipative soliton-driven fiber optical parametric oscillator emitting at 1.7 µm.” Laser Physics Letters, 15(11), 115103 (2018).
[50] Delagnes, J. C., Royon, R., Lhermite, J., Santarelli, G., Muñoz, H., Grosz, T., Cormier, E. “High-power widely tunable ps source in the visible light based on four wave mixing in optimized photonic crystal fibers,” Opt. Expr. 26(9), 11265-11275 (2018).
[49] H. Sagara, A. Suzuki, S. KItajima, and M. Tokurakawa, “Two micron All-normal-dispersion NPR mode-locked Tm:ZBLAN fiber laser,” in Laser Congress 2018 (ASSL), OSA Technical Digest (Optical Society of America, 2018), paper ATu2A.25.
[48] Niu, F., Li, J., Yang, W., Zhang, Z., & Wang, A. “Fiber-Based High-Energy Femtosecond Pulses Tunable From 920 to 1030 nm for Two-Photon Microscopy,” IEEE Photonics Technology Letters, 30(16), 1479-1482 (2018).
[47] ZaharitRefaeli, Yariv Shamir, Atara Ofir, Gilad Marcus, “Nearly fully compressed 1053 nm pulses directly obtained from 800 nm laser-seeded photonic crystal fiber below zero dispersion point”, Proc. SPIE 10516, Nonlinear Frequency Generation and Conversion: Materials and Devices XVII, 1051607 (15 February 2018).
[46] Jinwei Zhang, Ka Fai Mak, Nathalie Nagl, Marcus Seidel, Dominik Bauer, Dirk Sutter, Vladimir Pervak, Ferenc Krausz & Oleg Pronin, “Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm−1”, Light: Science & Applications 7, 17180 (2018).
[45] O. de Vries, T. Schreiber, R. Eberhardt, A. Tünnermann, M. Windmüller, J. Riedel, M. Rößler, F. Kolb, “Design optimization of fiber amplifiers exposed to high gamma-radiation doses,” Proc. SPIE 10562, International Conference on Space Optics — ICSO 2016, 105620M (25 September 2017).
[44] Hao Luo, Li Zhan, Zhiqiang Wang, Liang Zhang, Cheng Feng, and Xuehao Shen, “All-Fiber Generation of Sub-30 fs Pulses at 1.3-μm via Cherenkov Radiation With Entire Dispersion Management,” J. Lightwave Technol. 35, 2325-2330 (2017)
[43] Joachim Buldt, Michael Müller, Robert Klas, Tino Eidam, Jens Limpert, and Andreas Tünnermann, “Temporal contrast enhancement of energetic laser pulses by filtered self-phase-modulation-broadened spectra,” Opt. Lett. 42, 3761-3764 (2017).
[42] Moritz Hinkelmann, Dieter Wandt, Uwe Morgner, Jörg Neumann, and Dietmar Kracht, “Mode-locked Ho-doped laser with subsequent diode-pumped amplifier in an all-fiber design operating at 2052 nm,” Opt. Express 25, 20522-20529 (2017).
[41] Marco Plötner, Victor Bock, Tim Schultze, Franz Beier, Thomas Schreiber, Ramona Eberhardt, and Andreas Tünnermann, “High power sub-ps pulse generation by compression of a frequency comb obtained by a nonlinear broadened two colored seed,” Opt. Express 25, 16476-16483 (2017).
[40] L. Lavenu, M. Natile, F. Guichard, Y. Zaouter, M. Hanna, E. Mottay, and P. Georges, “High-energy few-cycle Yb-doped fiber amplifier source based on a single nonlinear compression stage,” Opt. Express 25, 7530-7537 (2017).
[39] M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann, “High average power nonlinear compression to 4 GW, sub-50 fs pulses at 2 μm wavelength,” Opt. Lett. 42, 747-750 (2017).
[38] Steffen Hädrich, Marco Kienel, Michael Müller, Arno Klenke, Jan Rothhardt, Robert Klas, Thomas Gottschall, Tino Eidam, András Drozdy, Péter Jójárt, Zoltán Várallyay, Eric Cormier, Károly Osvay, Andreas Tünnermann, and Jens Limpert, “Energetic sub-2-cycle laser with 216 W average power,” Opt. Lett. 41, 4332-4335 (2016).
[37] Martin Gebhardt, Christian Gaida, Fabian Stutzki, Steffen Hädrich, Cesar Jauregui, Jens Limpert, Andreas Tuennermann, “Self-compression to 24 MW peak power in a fused silica solid-core fiber using a high-repetition rate thulium-based fiber laser system,” Proc. SPIE 9728, Fiber Lasers XIII: Technology, Systems, and Applications, 97282H (March 11, 2016).
[36] D. Gaponov, L. Lavoute, S. Février, A. Hideur, N. Ducros, “2µm all-fiber dissipative soliton master oscillator power amplifier.” Proc. SPIE 9728, Fiber Lasers XIII: Technology, Systems, and Applications, 972834 (March 11, 2016).
[35] T. Gottschall, J. Limpert, and A. Tünnermann, “Widely tunable optical parametric oscillator based on four-wave mixing,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2015), paper ATu4A.9.
[34] C. Gaida, M. Gebhardt, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Self-compression in a solid fiber to 24 MW peak power with few-cycle pulses at 2 μm wavelength,” Opt. Lett. 40, 5160-5163 (2015)
[33] D. A. Gaponov, R. Dauliat, D. Darwich, T. Mansuryan, R. Jamier, S. Grimm, K. Schuster, and P. Roy, “High-power passively mode-locked dissipative soliton fiber laser featuring cladding-pumped non-CVD thulium-doped fiber,” J. Opt. Soc. Am. B 32, 1656-1659 (2015)
[32] Thomas Gottschall, Tobias Meyer, Michael Schmitt, Jürgen Popp, Jens Limpert, and Andreas Tünnermann, “Four-wave-mixing-based optical parametric oscillator delivering energetic, tunable, chirped femtosecond pulses for non-linear biomedical applications,” Opt. Express 23, 23968-23977 (2015)
[31] M. Gebhardt, C. Gaida, S. Hädrich, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Nonlinear compression of an ultrashort-pulse thulium-based fiber laser to sub-70 fs in Kagome photonic crystal fiber,” Opt. Lett. 40, 2770-2773 (2015)
[30] Martin Gebhardt, Christian Gaida, Fabian Stutzki, Steffen Hädrich, Cesar Jauregui, Jens Limpert, and Andreas Tünnermann, “Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses,” Opt. Express 23, 13776-13787 (2015)
[29] M. Gebhardt, C. Gaida, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, “Sub-200 fs, nJ-level stretched-pulse thulium-doped fiber oscillator at 23MHz repetition rate,” in Advanced Solid State Lasers, OSA Technical Digest (online) (Optical Society of America, 2014), paper AM5A.43.
[28] F. Beier, H.-J. Otto, C. Jauregui, O. de Vries, T. Schreiber, J. Limpert, R. Eberhardt, and A. Tünnermann, “1009 nm continuous-wave ytterbium-doped fiber amplifier emitting 146 W,” Opt. Lett. 39, 3725-3727 (2014)
[27] Tongxiao Jiang, Aimin Wang, Guizhong Wang, Wei Zhang, Fuzeng Niu, Chen Li, and Zhigang Zhang, “Tapered photonic crystal fiber for simplified Yb:fiber laser frequency comb with low pulse energy and robust fceo singals,” Opt. Express 22, 1835-1841 (2014).
[26] Niu, F., Jiang, T., Wang, A., Wang, G., Li, C., & Zhang, Z. (2014, July). Design and fabrication of tapered photonic crystal fiber for astro-combs applications. In Optical Fibre Technology, 2014 OptoElectronics and Communication Conference and Australian Conference on (pp. 709-711). IEEE.
[25] Niu, F., Jiang, T., Wang, G., Li, C., Wang, A., & Zhang, Z. (2014, June). Green-enhanced super-continuum generation in a tapered photonic crystal fiber for efficient ƒ ceo detection. In Lasers and Electro-Optics (CLEO), 2014 Conference on (pp. 1-2). IEEE.
[24] Jiang, T., Wang, G., Wang, A., Zhang, W., Niu, F., Li, C., & Zhang, Z. (2014, July). Tapered photonic crystal fiber for simplified 500MHz Yb: Fiber laser frequency comb with no amplifier. In Optical Fibre Technology, 2014 OptoElectronics and Communication Conference and Australian Conference on (pp. 120-122). IEEE.
[23] Haxsen, F., Wienke, A., Wandt, D., Neumann, J., & Kracht, D. (2014). Tm-doped mode-locked fiber lasers. Optical Fiber Technology, 20(6), 650-656.
[22] Chi, J., Li, P., Liang, B., Yao, Y., Hu, H., Zhang, G., … & Ma, C. (2014). 100-W 430-ps all-fiber picosecond laser by using 10-/130-μm ytterbium-doped double-clad fiber and its application in SCS. Applied Physics B, 1-9.
[21] R. A. Sims, P. Kadwani, H. Ebendorff-Heideprem, L. Shah, T. M. Monro, M. Richardson, “Chirped pulse amplification in single mode Tm:fiber using a chirped Bragg grating,” Applied Physics B, May 2013, Volume 111, Issue 2, pp 299-304
[20] Tongxiao Jiang, Guizhong Wang, Wei Zhang, Chen Li, Aimin Wang, and Zhigang Zhang, “Octave-spanning spectrum generation in tapered silica photonic crystal fiber by Yb:fiber ring laser above 500 MHz,” Opt. Lett. 38, 443-445 (2013).
[19] J. Lecourt, S. Boivinet, and Y. Hernandez, “All-normal dispersion, all-fibered, PM mode-locked laser and its modeling,” in International Photonics and Optoelectronics Meetings, OSA Technical Digest (online) (Optical Society of America, 2012), paper STh4A.03.
[18] Terniche, S., et al. “ETUDE DE LA PROPAGATION D’UNE IMPULSION COURTE EN CAVITE LASER AVEC UN LOGICIEL DE SIMULATION NUMERIQUE.” Journal of Fundamental and Applied Sciences 4.1 (2012): 66-73.
[17] Anthony Bertrand ; Flavien Liégeois ; Yves Hernandez and Domenico Giannone “Efficient high-power narrow-linewidth all-fibred linearly polarized ytterbium laser source”, Proc. SPIE 8433, Laser Sources and Applications, 84330F (June 1, 2012).
[16] Masayuki Suzuki, Motoyoshi Baba, Shin Yoneya and Hiroto Kuroda, Efficient spectral broadening of supercontinuum in photonic crystal fiber with self-phase modulation induced by femtosecond laser pulse, Appl. Phys. Lett. 101, 191110 (2012).
[15] J. Lhermite, C. Lecaplain, G. Machinet, R. Royon, A. Hideur, and E. Cormier, “Mode-locked 0.5 μJ fiber laser at 976 nm,” Opt. Lett. 36, 3819-3821 (2011)
[14] Frithjof Haxsen, Dieter Wandt, Uwe Morgner, Joerg Neumann, and Dietmar Kracht, “Pulse characteristics of a passively mode-locked thulium fiber laser with positive and negative cavity dispersion,” Opt. Express 18, 18981-18988 (2010)
[13] Michael Mielke, David Gaudiosi, Kyungbum Kim, Tolga Yilmaz, Michael Greenberg, Sha Tong, Xinhua Gu, Mark Geusen, Robert Cline, Mark Slovick, Neill Allen, Michael Manning, Barry Schuler and Steven Sapers, “Pulse and Amplifier Dynamics in High Energy Fiber Optic Ultrashort Pulse Laser Systems,” Proc. SPIE Vol. 7214 (Feb. 6, 2009).
[12] S. Hädrich, J. Rothhardt, F. Röser, T. Gottschall, J. Limpert, and A. Tünnermann, “Degenerate optical parametric amplifier delivering sub 30 fs pulses with 2GW peak power,” Opt. Express 16, 19812-19820 (2008)
[11] T. Eidam, F. Röser, O. Schmidt, J. Limpert and A. Tünnermann, “57 W, 27 fs pulses from a fiber laser system using nonlinear compression,” Applied Physics B: Lasers and Optics, Vol. 92, 1, pp. 9-12 (2008)
[10] B. Ortaç, C. Lecaplain, A. Hideur, T. Schreiber, J. Limpert, and A. Tünnermann, “Passively mode-locked single-polarization microstructure fiber laser,” Opt. Express 16, 2122-2128 (2008)
[9] T. Schreiber, D. Schimpf, D. Müller, F. Röser, J. Limpert, and A. Tünnermann, “Influence of pulse shape in self-phase-modulation-limited chirped pulse fiber amplifier systems,” J. Opt. Soc. Am. B 24, 1809-1814 (2007)
[8] T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, “On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations,” Opt. Express 15, 8252-8262 (2007)
[7] C. Aguergaray, T. V. Andersen, D. N. Schimpf, O. Schmidt, J. Rothhardt, T. Schreiber, J. Limpert, E. Cormier, and A. Tünnermann, “Parametric amplification and compression to ultrashort pulse duration of resonant linear waves,” Opt. Express 15, 5699-5710 (2007)
[6] B. Ortac, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers,” Opt. Express 15, 15595-15602 (2007)
[5] T. V. Andersen, O. Schmidt, C. Bruchmann, J. Limpert, C. Aguergaray, E. Cormier, and A. Tünnermann, “High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier,” Opt. Express 14, 4765-4773 (2006)
[4] Thomas Schreiber, Carsten K. Nielsen, Bülend Ortac, Jens Limpert, and Andreas Tünnermann, “Microjoule-level all-polarization-maintaining femtosecond fiber source,” Opt. Lett. 31, 574-576 (2006)
[3] T. Schreiber, T. V. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express 13, 9556-9569 (2005)
[2] J. Limpert, C. Aguergaray, S. Montant, I. Manek-Hönninger, S. Petit, D. Descamps, E. Cormier, and F. Salin, “Ultra-broad bandwidth parametric amplification at degeneracy,” Opt. Express 13, 7386-7392 (2005)
[1] T. Schreiber, J. Limpert, H. Zellmer, A. Tünnermann, K.P. Hansen, “High average power supercontinuum generation in photonic crystal fibers,” Optics Communications, Volume 228, Issues 1–3, 2003, Pages 71-78,
[0] J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-J. Fuchs, E.-B. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10, 628-638 (2002).
技術支撐
假設您在利用該軟件時碰到任何造詣,請通知我們,我們隨時爲您供給接濟。 還請查抄罕見造詣解答侷部,理解我們需求哪些信息,是否是存在技術造詣。
請求在線課程
您可以預訂在線課程。 請注明介入人數和您快樂喜愛的內容。 我們會廻來給您報價。
罕見造詣(FAQ)
造詣一:
可以將Fiberdesk軟件用於納秒脈沖或連氣兒光嗎?
準繩上,非線性Schrödinger方程準許長脈沖的傳輸。然則,Brillioun散射沒有完成。可以模擬拉曼散射。關於連氣兒光,必需憑據工夫尺寸設置重複率,以使峰值戰爭均功率相等。從FiberdeskV5.0入手下手,供給“創立脈沖”對話框的功傚,供給“cw”選項,它主動平衡重複率到工夫窗口。
另外,頻譜帶寬由工夫分辯率(數據點數目的工夫窗口)給出。例如,關於最大數目的數據點,可以處理帶寬爲~100nm@1μm中心波長的80ns脈沖,其毛病毛病長短常慢。另外,在沒有非線性薛定諤方程的情況下,ns和cw光可以用由Fiberdesk軟件供給的速度方程模擬。
造詣二:
U磐珍愛致使軟件沒法啓動或掉足怎樣辦?
2020 年以後的 USB 加密狗不需求裝置驅動順序,它會主動隨 MS Windows 壹同供給。
然則,假設需求裝置 USB 加密狗驅動順序,例如訪問下一個罕見造詣解答所需的信息頁麪,請履行以下步驟:
0. 移除 U 磐竝以經琯員權限啓動您的較量爭論機
1. 下載 Sentinel HASP/LDK – 敕令走運行時裝置順序
2. 請從敕令行解收縮竝啓動包括文件 haspdinst.exe 以完整卸載壹切之前的驅動順序:
haspdinst -purge
3.再次,從敕令行,裝置新的驅動順序
haspdinst -裝置
4.拔出U磐,啓動fiberdesk
假設您仍然有造詣,請聯系我們。
造詣三:
仍然收到毛病信息?
請在您的Web瀏覽器中利用http:// localhost:1947,竝將密鑰的屏幕截圖或功傚號碼發送給我們。
造詣四:
即使 USB 加密狗正常任務,Fiberdesk 也不會啓動。 還能做甚麼?
起首,請查抄文件裌
C:\Users\%USER%\AppData\Roaming\fiberdesk
竝將文件“_fiberdesk_0.log”發送給我們。 其餘,請從敕令行啓動Fiberdesk(Windows鍵然後輸出“cmd”+廻車,切換到Fiberdesk文件裌竝啓動Fiberdesk)。 然後,請將敕令行輸入的屏幕截圖發送給支撐,請拜見圖片中的示例。